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W The moving finite element (WE) method is a new approach for numerically

solving partial differential equation (PDE) systems;( 1,293) it is parti-

cularly well suited for resolving POE solutions which may contain large, mul-

tiple gradients over highly disparate scales in both space and time. These
types of PDE's abound in such basic technical disciplines as aerodynamics

(with emphasis on shear layers, shocks and their possible interactions), corn-

* bustion, plasma physics, interface phenomena, continuum mechanics, and other

*-transport processes.

In the WE method, grid co-ordinates themselves are dependent variables
which are calculated continuously at each time step in order to minimize POE
residuals. This feature has successfully suppressed numerical dissipation to
very low levels and has resolved accurately in 1-0 those physical transport
processes which may occur over extremely small scales (e.g. those described
by the Navier-Stokes equations for viscous compressible fluids) simultane-

ously with other physical processes which may span macroscopic scales. The

objectives of the present research effort are to extend the FE method to 2-D

and to investigate its basic properties and needs for solving important POE's
in 2-D. The work tasks which are contributing to the achievement of these

objectives are discussed in the next section of this report.

It was established during the first year of this study that the WE
method does extend logically and practically to 2-0. An initial experimental

2-0 WE code version was developed in that early work for the purpose of con-
ducting continuing theoretical and applied mathematical research in diverse

scientific contexts. Also in the first year of study, effective WE node
movement properties and significant node savings were demonstrated for simple

-- but yet significant -- test problems in 2-0. The WE code structure was
found to be amenable to vectorization and to use on envisioned advanced com-

puters.

Having established these milestones in the first year, work during this

second year of study has moved to a new level, focussing now on a host of
those issues and research needs which are essential to the use of the WE

. . .



method in truly large-scale 2-D computations. As in the past, some of the

emerging WE results in 2-D may be unique and/or contrary to conventional

wisdoms. In several areas, they suggest some important lines of research

which should perhaps be pursued more Intensively in the future, both by our-

selves and by others.

This report is organized as follows: the Technical Progress section

provides a substantive statement of significant accomplishments and progress

. toward achieving the research objectives. The Publications section provides

a cumulative chronological list of written publications in technical journals

and includes those in press and manuscripts of articles in preparation. The

,4 Personnel section lists the professional personnel associated with the re-

search effort, and the final section entitled Interactions lists coupling

activities.

I. TECHNICAL PROGRESS
1.°*j

Work during this period addressed, among other tasks, FE node movement
properties, ODE solvers for POE methods, linear systems solvers for the WE

method, regularization techniques for the FE method, boundary conditions,

alternative co-ordinate systems, and interface tracking. This was essentially

a building year; i.e., one of building, testing, and implementing both new

and existing mathematical methods which are needed in the investigation of

the WE method in 2-0. In several areas above our WE work has barely opened
entire new lines of inquiry, and results are either preliminary or incom-
plete. In such cases, the discussion of progress is necessarily general. On

the other hand there are some significant implications which are already

apparent in some of the new research areas which have been broached during

this period for which the potential significance is indicated more specifi-

-.i: cally -- but with the understanding that a great deal of additional work is

needed in order to further substantiate or refute the early indications.

1. WE Node Movement Properties

Burger's test exmple can be formulated to pose computational challenges

of varying degrees of difficulty to PDE methods in 2-0. This can be done by

-2-
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selecting initial conditions which give rise not only to steep shocks with
planar profiles (as in work during year 1 of this study) but also to highly
skewed wave profiles with gradients of greater of lesser magnitudes.

...-.

The PDE's for this skewed Burger's model problem are given by:

ut  -uux VUy + (uxx+Uyy) ()

vt -uvx - VVy + V(vx + Vyy) (2)

where u is the x component of velocity and v is the y component, and v is an
effective diffusion coefficient. Shocks are generated with gradient magni-

tudes on the order of 1/v. Initial conditions which produce a doubly skewed

wavefront profile are shown schematically in Figures 1 and 2. (The counter-

posed initial velocity fields are designed to create an evolving shock pro-

file which is skewed in both the x and y components of velocity.) Boundary

conditions are given by:

u(O,y) - u(ly) -0 0. < y< 1.
vx(O, y) - vx(l, y) - 0. 0. < y . 1.
u(x, 1) - 0.2 sin ix 0. < x < 1.

u(x, 0) a -.2 sin ix 0. < x < 1.
v(x, 1) - -1. + 0.2 cos ix 0.<x< 1.

v(x, 0) + 0.2 coswx 0.<x< 1

The WE nodes are fixed by zero Dirlchlet conditions along the top and bottom
horizontal edges of the domain. The nodes are free to move vertically by
symmetric boundary conditions along the left and right edges of the domain.

This problem can be solved readily by perhaps many POE solution methods

whenever v assumes sufficiently large values. For example, a value of v

0.02 produces shock gradients on the order of 102.

The WE method requires only an 8 x 8 grid to give reasonably accurate

solutions to this problem, and Figures 3 and 4 show very accurate FE solu-
tions on a 12 x 12 grid. Here Figure 3 presents an isometric view of the

-3-.........................................
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Figure 2. Plot of initial values of u in the 2-D Burger-like example on
- a 12 X 12 grid mesh.
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Figure 3. Isometric view of v at t =3.0 in the 2-0 Burger-like
r.. example on a.12 x 12 MFE grid.
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Figure 4. WEE grid projections on the X-Y plwine at t a 3.0 in
the 2-D Burger-like example on a 12 x 12 grid.
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Figure 5. Contour plots of selected values of u at t =3.0 in the2D
2Burger-like exaple on a 12 x 12 grid.
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evolving profile of the y component of velocity at t = 3.0, well after the
shock has formed and after the wavefront has undergone significant shearing.

The x-component of velocity is sufficiently sheared that a hidden line plot,

which is not yet available, is required for easy interpretation by the naked

V;.. eye. The WE grid nodes have migrated extensively from their initial posi-
tions as can be seen in Figure 4 which represents the grid mesh projected

onto the x-y plane at t a 3.0. Figures 5 and 6 present contour plots for
selected constant values of u and v, respectively, at t = 3.0. It is evident
from the magnitudes of shock gradients and from the regions of significant

curvature which span nearly the entire domain that an alternative PDE method
with a fixed grid may require on the order of 104, or more, grid nodes in

order to achieve comparable degrees of accuracy in this problem.

UThis same basic problem can now be made to correspond to a much more
demanding physical problem by letting v = 0.002. Figure 7 shows an isometric
view of the MFE solution on a 16 x 16 grid for this case. Shock gradients

are now generated with magnitudes of several times 103. Before discussing
these WE results in detail, some general observations should be discussed:
It is extremely unlikely that any other existing PDE method using either a
fixed grid or a less than optimal adaptive grid can accurately solve this
test problem with fewer than 105_106 grid nodes. It should also be noted here
that numerous inviscid solvers which are under development do not apply at
all to this type of advection-diffusion problem because the Laplacian is an

essential mathematical operator whose effects must be rigorously resolved in
advection-diffusion PDE's. Because inviscid solvers do not generally solve

PDE's which contain Laplacians, they generate shocks with gradient shapes and
magnitudes that are governed exclusively by the selected gridding and/or by

the purely numerical dissipative processes in the inviscid method, per se.
Consequently, inviscid solvers have no chance of resolving correctly any of
those physical dissipation effects which are usually expressed by Laplacian

operators and are present with fundamental physical significance in transport

theory, hydrodynamics, plasma physics, continuum mechanics, and many other
disciplines in the physical scier,es. Thit critical discussion is not in-

tended to denigrate the extensivt ,veea n efforts on inviscid POE solvers
And/or fixed node P E methods; but it does suggest that efforts to accommo-
date Laplacian operators in otherwise inviscid solution methods and efforts

-7-
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Figure 7. Isometric view of Burger's test example at t 1.8 with
v - 0 .00 2 on a 16 x 16 WFE meshl. Shock gradients have
magnitudes of approximately 104 in this solution for u.

to investigate more optimal adaptive grid methods for use in many existing
POE methods which are applied to advection-diffusion problems should now
assume greatly increased significance. In the meantime, the WFE method is
proving to be a certain kind of research pacesetter, and it is providing
various clues to some of the significant new areas vhere mathematics research -

can profitably be intensified, as will be discussed further in other task

areas below.

-8-
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Early FE results in 2-D are apparently continuing the trend which

appeared in previous 1-D results. There, FE solutions of both the Navier-

Stokes and physically dissipative continuum mechanics equations in 1-D ex-

hibited perhaps unprecedented simultaneous resolution of extremely disparate
microscale and4 macroscale physical processes.(4,5) While 2-D FE results

which emerged during this period exhibit similar promising features, numerous

mathematical problems still require resolution in order to attain fully the 7

desired levels of success in truly large-scale problems in 2-D. Clues to

these problem areas can be seen in Figure 7.* For example, the irregularity

-: of the grid triangles in the face of the shock could eventually prove to be
troublesome. Similarly, the small oscillation at the base of the shock in

this run is unsatisfactory, even though it can be eliminated in any nwuber of

ways. Extensive testing and analysis has indicated that the causal mechanisms

underlying such mesh irregularities and oscillations in 2-D can be associated

with: (i) time step and error control policies in the basic ODE integrator

of Gear which is presently used, (ii) convergence properties of the linear

solver, and (iii) limitations in the first-generation regularization func-
tions. Each of these areas has been under intensive investigation during this

1 period and some early results and their implications are discussed below.

• -2. ODE SOLVERS FOR PDE METHODS

The current status in this task area is that most existing ODE solvers

are not well-suited for ready implementation in either the FE method or

numerous other advanced POE methods. This critical comment is, again, not

intended to denigrate the impressive advances in ODE research and development

during the past decade; instead, it is intended to bring a strong new focus

upon the needs of PDE solution methods, in general, and more specifically
upon the pressing needs of adaptive grid POE methods which may involve large

numbers of discretized equations with highly distorted grids. Large distorted

grid meshes may, in turn, augur for iterative linear solvers which can solve

poorly conditioned matrix equations, as will be discussed further below.

*It is apparent that these suggested mathematical problems will have to be
resolved not only for the FE method but also for most other advanced PDE
methods which may seek to solve the difficult advection-diffusion equations
which frequently arise in physical problems.

-9-
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A basic difficulty with most stiff ODE software has come to the fore in

the present WE research; i.e., most ODE solver packages have been designed

* to accommodate many different types of classic ODE problems. By classic, one

refers here to such problems as chemical kinetics systems in which the depen-

dent variables (e.g. species concentrations) are all generically the same.

The error and time step controlling policies in solvers for classic ODE pro-
* blems are usually less than satisfactory for applications of the ODE package

to POE solution methods. In POE systems, the spatial dependence of generi-

*:: cally dissimilar variables comes into play. In fluid dynamics problems, for

example, the overall array of PDE variables which have been discretized on N

7grid nodes (x1, x2, ... XN) can be represented as {pl, ml, E1, P2, m2 E2,.""

pNmnN, EN}, where p1 B p(xl), P2 P(x2), etc. An ODE solver then operates on
this array of discretized POE variables as a single large vector {Yl, Y21 Y3,

Y4 Y3N-29Y3N-1Y3N where yl P1, y2 = ml, y3 = E1, y4 = P2, etc. Be-

cause the error control policies in the Gear ODE package, for example, are

based upon L2 norm of all normalized quantities yi/(Yi)max unacceptably large

errors can be admitted in some individual components of p, m, or E at arbi-

trary spatial locations. A much better measure for error control policies in

PDE applications are maximum norms applied to each discretized POE variable.

The implementation of alternative norms is found to extend deeply into the

logical structure of most ODE software packages, and alterations must usually

be performed by someone who is intimately familiar with the ODE package.

(Dr. Said Doss is the local expert on these matters in our FE research.)

In view of such considerations, significant levels of effort have been

devoted during this work period to: (i) modifications of Gear's basic ODE

method for WE computations; this involved wholesale alterations of the

internal Gear code structure and also extensive considerations of scaling of

. MFE problem variables; and (ii) inevitably, the development of entirely new

ODE integraton procedures which better serve POE solution needs.

The extensive modifications to Gear's method have sufficed to solve
moderately challenging POE's with modest numbers of WE grid nodes as was

.4 seen above. But it is now clear, also, that completely new ODE code struc-

tures will be needed in pending large-scale NFE computations. We have,

therefore, undertaken the development of a low-order Runge-Kutta integration

-10-

.................. . . .-...-. . . .



* .K%. 771 - -

package for WE computations. This solver addresses several PDE needs: First,

error control measures operate on flexibly ordered variable arrays using
maximum norms on a (POE) component-by-component basis. Second, PDE solutions

have been found to require much more gradual time step advancement policies
than have been built into most classic ODE solvers.* This distinction between

classic ODE and POE time step properties apparently stems from the fundauen-
tally coupled space-time dependences in PDE systems, vis a vis classic ODE
problems which have no direct or implied spatial dependences. Whereas it is

computationally worth the effort to attempt very large incremental increases

(sometimes-by several orders of magnitude) in At in classic ODE applications
-- even if such attempts may sometimes fail--one finds that the computational

penalties for unsuccessful large At increases are much more severe in those
POE applications where space-time couplings augur intrinsically for more

gradual At advancement policies. Third, time step control policies in the
new ODE solver also incorporate convergence criteria from iterative linear
systems solvers. Such iterative solvers should henceforth be used in large-

scale WE computations in the interest of minimizing computer memory require-

ments. Fourth, low-order ODE methods are now used because high-order solvers

provide no apparent advantages in M4FE applications and because low-order

methods simplify the numerical logic, improve the code reliability, and avert

possible errors associated with changes of order which are sometimes present

in classic ODE system solvers. Finally, constraints on allowable fractional

changes in PE dependent variables are incorporated in the overall time step

control policy in the new ODE solver. This new ODE solver is presently being

implemented for use in large-scale WE computations; and detailed descriptions

of this solver, in conjunction with FE test applications, will appear in

forthcoming journal submissions.

From these initial results it is clear that renewed ODE research efforts

on PE-related problems, from several possible conceptual bases, is now time-
ly if not long overdue. Our own efforts have barely begun to uncover many of

the most pressing needs, much less to perform the extensive detailed tasks of

numerical analysis which should now be pursued. Certainly, the present WE

project would benefit from expanded ODE efforts which deal with: (1) scaled

.- *These policies also extend deeply into the ODE code structure.

~-11-
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and unscaled systems of incommensurate variables on arbitrarily connected

grid meshes, (ii) linkage of certain At-sensitive convergence criteria into

the general ODE integration control policy, and (iii) splitting of the solu-

tion of the grid node equations from the solution of the discretized equa-

tions for the physical variables.

3. LINEAR SOLVERS FOR THE WE METHOD

Advection-diffusion equations have steadfastly resisted (if not defied)

satisfactory numerical solution whenever they have been used to describe

physical processes over highly disparate scales. Such problems occur, for

example, in nuerous applications of Navier-Stokes equations to viscous com-

pressible fluids which may contain shear layers, shocks, and separated flows.

The basic difficulty derives from the nature of the matrix equations which

must be solved in numerical PDE methods that are applied to these problems.

The matrix equations for discretized advection-diffusion PDE's are large,

sparse linear systems in which the matrices are non-syqmmetric and are not

dominated by terms on the diagonal. The skewness of these POE matrices can

become quite large for large At's and for highly distorted grid meshes, both

of which are key f.ctors in efficient solutions of these types of advection-
diffusion equations.

The simple advection-diffusion equation, yt + c • Vy - vV2y, can be used

to illustrate some of these features. Upon discretization of the advection-

diffusion* equation, a linear system of the form (A+B)X - C must be solved.

The matrix A represents the stencil associated with the advection operator,
and the matrix B represents the stencil associated with a nine point differ-

ence scheme for the Laplacian operator in 2-0. For representative values of

At, these matrices may contain elements with the scaled magnitudes shown

below:

(0 15 0

A 15 0 15) (3)
-15 --

1 4 18 -20 (4) ""
1 4 1 , and :

(A+B)- -11 -20 19 (5I)

-1211
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": Testing and analysis has revealed that most available linear solvers have
* relatively poor rates of convergence when such significant large elements can

occur away from the diagonal in non-symmetric matrices. For example, such
iterative matrix solution methods as conjugate gradient, multi-grid and
numerous other modern linear systems solvers which work well for symmetric
matrices in discretized elliptic equations and/or for uniform grid meshes do

l, not converge satisfactorily in presently considered advection-diffusion
problems. The source of difficulty for the existing linear solvers clearly

" derives from the highly skewed matrices and their off-diagonal dominance. We
have also shown during this work period that the direct L-U decomposition
method which has been used in the Gear method until recently becomes both
noisy and computer storage limited when large bandwidths arise in problems
with more than a moderate number of FE grid nodes. Again, we do not wish to
denigrate the extensive ongoing work on linear systems solvers--but, rather,
to call attention to these essential keys to further progress in certain PDE

-. research areas.

Having identified more clearly the significance of these issues, we have
developed in collaboration with Professor Keith Miller one promising new
approach to handling more effectively these imposing POE requirements on

-. linear systems solvers. This new matrix solution scheme has, so far, achieved

good convergence rates for at's which may be 10 to 20 times greater than the
S.large values of At called for by the ODE integrator. (It is generally hoped

in POE solutions that the time step size is determined by the truncation
error of the ODE integrator and not by severely limited convergence proper-
ties of the linear solver.) This advanced linear solver has solved the

*. Burger's equations discussed above with the same CPU cost as the direct L-U
decomposition method in the Gear solver, but with greatly reduced storage
requirements. Implementation of this new linear solver for large-scale WE

computations is progressing well, and details of this new approach will
-.1 appear in journal submissions during the next work period. Clearly, our

initial efforts on a more adequate linear solver for advection-diffusion

problems have only barely opened a new facet of research which now warrants
much more intensive theoretical and practical analysis, both by ourselves and

by many others.

~-13--
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4. REGULARIZATION

Regularization techniques have rarely been used systematically, if at .4

all, in PDE research in the past. There is thus presently great confusion

and misunderstanding of the role of regularization techniques in PDE solution

methods. On the one hand, many practitioners of conventional PDE methods

suspect that regularization is an unfair trick by which one can force PDE

solutions to come out in any desired manner and that such methods can there-

fore not be trusted. On the other hand, regularization methods are proving

to be valid and powerful mathematical tools which can now be applied to

achieve effective grid movement criteria systematically and to ensure that

high PDE solution accuracy is also achieved in the process.

Only the simplest, first-generation regularization functions have been

used in 2-D FE problems to date. These penalty functions act like springs

and/or dashpots in their action on mesh triangle altitudes (see Figure 8).

The current penalty functions allow mesh triangles to distort more or less

arbitrarily, so long as altitude magnitudes remain positive and maintain some

designated minimum separation. This simple strategy has worked remarkably

well in a surprisingly broad range of 2-D problems, including all of the

results shown in this report. We are presently probing the limits of ade-

quacy of this simple first-generation regularization method in such extended

* applications as Mach stems in gas dynamics and dynamic impact problems in

continuum mechanics. In the Burger's test example discussed above with v =

0.002 and a 16 x 16 MFE mesh, minimum nodal separations were chosen to be

much smaller than v. As seen in earlier figures, the grid triangles can

become very irregular and assume configurations with extremely large aspect

ratios (0(102) to 0(103)). Figures 9 and 10 below show this same Burger's
test problem run with Osofter" dashpot forces acting on triangle altitudes

than in the run shown previously in Figure 7. The triangles in the face of

the shock are more regular in this latter run, and their compaction in the

center of the wavefront resolves the region where intense shearing occurs.
Figure 11 shows the projection of the FE grid mesh on the x-y plane in this

example. Selected mesh connections have been traced in heavy ink in these

latter figures in order to indicate the general migration pattern of the WE

nodes. It is evident that extremely large mesh triangle aspect ratios have

-14-
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been readily maintained near the shock front, still using the improved L-U

decomposition linear solver in the modified Gear integrator in both of these

i runs. Perhaps more striking is the large degree of fluid shearing which is

resolved in the face of this skewed shock front by the FE grid.

..

-4"

.-

Figure 8. Schematic Representation of First-Generation WE
Regularization Functions in 2-D.p

• "- In the long run, there is no fundanental reason, or desire, for the FE

. mesh to always be as highly skewed as the physical flow lines in order to

accurately resolve such shear layers. (It is nevertheless encouraging at
this stage of development that the mathematical potency of the WE method is

sufficiently great to handle such large grid aspect ratios effectively.) Al-

ternative regularization criteria which would promote mesh homogeneity (e.g.,

,p by minimization of grid triangle aspect ratios) are presently under consider-

ation for use in conjunction with the first-generation regularization func-

tions. Several possible formulations of grid homogenizing regularization

schemes will be tested in the next work period. These new criteria are ex-

pected to improve numerical conditioning properties and thus lead to greater

computational economy in WE codes. Mesh homogeniety should also be a signi-

ficant factor in applications which must resolve turbulent eddies and/or

• -other rotating flows.
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Figure 9. Isometric View of the 2-D solution of the velocity
component. v, in the Burger-like exmple with v 0.002
on a 16 x 16 MFE grid.
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We have now barely opened a potentially vast area of investigation of re-

gularization techniques for adaptive POE meshes. This is certainly one of the

key areas where we, and perhaps many others, can profitably expend greater

efforts, particularly in view of the very attractive WE properties which are

* emerging in: (i) alternative co-ordinate systems and (ii) the treatment of
interface phenomena, both of which have a direct bearing on, and relationship

P to alternative regularization methods. Here also the WE method is a certain

kind of research pacesetter which is suggesting means of applying these new

mathematical methods of regularizing POE node motions in both new and conven-

tional PDE methods so as to resolve such historically persistent dilemmas as

singularities at origins of spherical and cylindrical coordinate systems,

artificial smearing of interfaces, unduly constrained grid aspect ratios,

numerical diffusion, severe time step constraints, and grid node utilization.

5. ALTERNATIVE CO-ORDINATE SYSTEMS

Initial work is in progress on 2-D WE calculations in cylindrical co-
ordinates. The results in this task also provide guidance for later develop-

ments in spherical co-ordinates. The major issue of present interest is the

apparently natural elimination of singularities at the origin. Such singu-

* larities have historically plagued many conventional PDE methods.

Transport equations contain in cylindrical co-ordinates, for example,

advection operators of the form r r (ry), where r is the radial co-ordinate;

and y is a dependent variable of the POE system. Singularities or other
anomalous features frequently occur in various discretized representations of

the term (y/r) as r-O. In contrast, the WE discretization is formulated

in terms of well-defined inner products which eliminate such possible singu-
larities. For example, the inner products of the term (y/r) with the basis

function a, taken over the interval Ar, is given by
-I..

f(yr) a rdr .adr

The integral of a • y dr is essentially analytic and is readily evaluated

everywhere on the problem domain. This attractive WE property in cylindrical

co-ordinates obviously holds in a similar manner in spherical co-ordinates.

The properties of these r-weighted norms are naturally different than the WE

-19-
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" inner products which were used in the Cartesian co-ordinate systems considered

S--in earlier WE work. Analysis and testing of these properties associated with

Pr-weighted norms and of node controlling penalty functions in cylindrical co-

ordinates have been undertaken in this period, and extensive work is expected

to continue in this area in the future in order to understand and exploit

fully the benefits of this analytic WFE formulation of otherwise troublesome

!. POE operators in cylindrical and spherical co-ordinates.

-20
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